
Solutions for Go Figure 2003

1. (a) $900. The investment decreased by 10% in two years, so it then has only 90% of its
original value. 1000× .9 = 900.

(b) $902.50. The investment dropped 5% in its first year to a value of 1000 × .95 = 950.
This now decreases by 5% of the smaller amount: 950× .95 = 902.50.

2. (a) A = 2, B = 8, and C = 5. The units digit of the product is equal to the units digit of
3×A. There is only one single-digit number that has a units digit of 6 when multiplied
by 3. That is 2 (3 × 2 = 6). Therefore A = 2. Therefore the first number is 723. Now
consider the tens digit of the product. This is equal to the sum of the tens digit of 723×2
(which is 4) plus the tens digit of 723×B×10 (which is the units digit of 3×B.). So we
must find a B such that the units digit of 3×B + 4 is B. The easiest way to find such a
B is to make a table. We use the notation u(n) to represent the units digit of number n.

B: 0 1 2 3 4 5 6 7 8 9
3B: 0 3 6 9 12 15 18 21 24 27

u(3B + 4): 4 7 0 3 6 9 2 5 8 1

There are two columns in the table where the last entry is equal to the first: 3 and 8.
However, 3 is already used explicitly in the problem, so the only possible value for B
is 8. We determine C by multiplication: 723 × 82 = 59286, which has the correct form
with C = 5.

(b) A = 1, B = 5, C = 6. Looking at the first equality, by cross multiplication we have
A39 × CB = C9B × A3. The units digit of each of these products must be equal, so
again denoting the units digit of a number n by u(n), we have u(9 × B) = u(3 × B).
Again, it is easiest to make a table (or add another row to the table you made for the
first part of this problem):

B: 0 1 2 3 4 5 6 7 8 9
3B: 0 3 6 9 12 15 18 21 24 27
9B: 0 9 18 27 36 45 54 63 72 81

There are two possible values for B where u(3 × B) = u(9 × B), namely 0 and 5.
However, B 6= 0 because division by 0 is illegal. (For more advanced students, even if
you wish to consider division of a finite number by zero to be equal to infinity in the
limit, certainly the other two fractions are finite so B = 0 is not correct). Therefore, we
have B = 5. Now the second equality becomes A3

C5
= A

5
. Again by cross-multiplication

we have A3 × 5 = C5 × A. The units digits of these two products much match so we
have u(5×A) = 5. Therefore A is odd. Futhermore, we know A is not equal to 3, 5, or 9
because these digits are already used. Therefore A is either 1 or 7. Consider the second
equality and observe that both A3 and A are integers. Therefore, A must be a factor of
A3. We then know that A = 1 because 1 is a factor of 13 but 7 is not a factor of 73.
Now the final equality becames 13

C5
= 1

5
, so C5 = 65 giving us C = 6. As a final check,

we verify that 139
695

= 1
5

because 139× 5 = 695.

3. (a) 5. Since 510, 50 and 20 are all divisible by 10, this is the same problem as how many
ways can you create 51 from only sums of 5’s and 2’s. Since 51 is odd, there must always
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be an odd number of 5’s, with a maximum of 9: 9 × 5 + 2 × 3 = 51. One can always
replace two 5’s with five 2’s since 2×5 = 5×2. Therefore, we can create 51 with 1, 3, 5, 7,
or 9 fives (and an appropriate number of twos).

(b) $1.19. There can be no dollar coins, since these have value exactly $1. There can be at
most one half dollar, since two would again sum to a $1. Since two quarters are equal in
value to a half dollar, without loss of generality (with respect to maximum value), we can
assume the box contains at most one quarter. Similarly, since 5 dimes are equivalent to
a half dollar, we can assume the box has at most 4 dimes. Since 2 nickels are equivalent
to a dime, we can assume the box has at most 1 nickel, and finally, since 5 pennies are
equivalent to a nickel, we can assume the box has at most 4 pennies. Since two dimes
and a nickel is equivalent to a quarter, we cannot have all three coins in the box (we’d
just use a quarter instead). Therefore, we either must restrict the box to hold only one
dime, or restrict it to hold no nickels. The second choice (drop 1 nickel) removes less
value than removing 3 dimes. At this point, our box contains at most 1 half dollar, 1
quarter, 4 dimes, and 4 pennies for a total of $1.19. We confirm there is no way to create
exactly $1 from this set. Any set of coins of value $1 would have to include the quarter
and half dollar (otherwise, there wouldn’t be enough value). However, there is no way
to create 25 cents from four dimes and four pennies (3 dimes is too much; 2 dimes plus
all the pennies isn’t enough).

4. 87 and 88. Two consecutive pages in a book will have consecutive numbers, say n and n + 1.
Their product will be close to a perfect square. Since 100 × 100 = 10000, we know the page
numbers are less than 100. Squares of numbers like 50 and 60 are easy to compute (the square
of the tens digit times 100), so one can see that the page numbers we seek are between 80
and 90 since 802 = 6400 and 902 = 8100. The units digit is determined by the product of two
consecutive integers. There are only two such products that give a units digit of 6, namely
2× 3 = 6 and 7× 8 = 56. Thus the pair of pages is either 82 and 83 or 87 and 88. Checking
both possibilities, the second pair (87, 88) gives the right product 7656.

5. (a) 295. In this progression, the terms are 5× 1, 5× 2, 5× 3, and so on. The 59th term is
5× 59 = 295.

(b) 63. The sequence is an arithmetic progression with a fixed difference of 5. If this
sequence had begun with 5, we would only have to divide the final term by 5 to find
the number of terms. But we can compare sequences with the same fixed difference and
length. Therefore, the sequence 5, 10, 15, 20 . . . , 315 (where each term is 7 less that the
corresponding term in our sequence) has the the same number of terms as our sequence.
So the number of terms is 315/5 = 63.

A “classic” method to determine the number of sequence elements between a start value
and an end value is to compute the span of the sequence (difference between the first
and last term): 322− 12 = 310. Dividing by the difference between successive terms (in
this case 5) gives us the number of terms after the first one: 310/5 = 62 terms after the
first one. We must then add one for the first term, so there are 63 in total. You should
use this method with caution since it is easy to forget to add one for the first term.

(c) 431 = 8 + 423.

(d) 42. Using the method described for part (b), we compute the number of terms in
the arithmetic progression 8, 13, 18, . . . , 423. It is the same as the number of terms

2



in 5, 10, 15, . . . , 420, which is 420/5 = 84. The first and last pair 8 and 423 sum to 431.
The second term 13 is 5 more than the first term. If it is paired with the next-to-last
(83rd) term, which is 5 fewer than 423, we have both added and subtracted 5 compared
to the first pair, and therefore has the same sum of 431. Is we continue to pair the
ith smallest with the ith largest, we always have the same sum. Since we have an even
number of terms, there are 84/2 = 42 pairs.

(e) 18102. There are 42 pairs and each pair sums to 431. Therefore the sum of the terms in
the arithmetic progression equals the sum of all the pairs equals 42× 431 = 18102.

(f) 44. 446 = 423 + 23. This is the sum of the last term and the fourth term. We can also
create a sum of 446 by pairing the 5th term 28 with the next-to-last term 418 and so
on. This is the same sort of pairing we did in part (d) except that, once we remove the
initial 3 terms from the pairing process, we have an odd number of terms. The middle
term in this process 223 is exactly half of 446 and it has no mate (it would have to be
paired with itself). Therefore, there are 80/2 = 40 pairs that sum to the forbidden value
of 446. We can select only one number from each such pair. We can also select 223 and
the first three terms for a total of 40 + 4 = 44.

6. (a) a = 3, b = 81. The ratio is 27
9

= 3, so a = 1× 3 = 3 and b = 27× 3 = 81.

(b) c = 27
2
, d = 81

4
. The ratio is 6

4
= 3

2
. Therefore c = 9× 3

2
= 27

2
and d = 27

2
× 3

2
= 81

4
.

(c) e = 1, f = 1
2
. The ratio is 4

8
= 1

2
. Therefore e = 2× 1

2
= 2/2 = 1 and f = 1× 1

2
= 1

2
.

(d) g = 27, h = 81
4
. The ratio is 36

48
= 3

4
. Therefore, g = 36× 3

4
= 27 and h = 27× 3

4
= 81

4
.

7. (a) 4, 8, 16, 32. S(1) = 1 + 2 = 3 so S(1) + 1 = 4. S(2) = S(1) + 22 = 3 + 4 = 7.
S(3) = S(2) + 23 = 7 + 8 = 15. S(4) = S(3) + 24 = 15 + 16 = 31.

(b) 992.

25 + 26 + 27 + 28 + 29 = 25(1 + 2 + 22 + 23 + 24)

= 32× S(4)

= 32× 31

= 992.

(c) 2048. S(10) + 1 = S(4) + 1 + (25 + 26 + 27 + 28 + 29) + 210. From part (a) we know
that S(4) + 1 = 32. From part (b) we know that 25 + 26 + . . . + 29 = 992. 210 = 1024
so S(10) + 1 = 32 + 992 + 1024 = 2048 = 211. You may have noticed S(n) + 1 = 2n+1

as a pattern from the first four parts of this question. This is true in general from the
following argument. S(n) = 1 + 2 + . . . + 2n. Multiplying both sides by 2, we have
2 ∗ S(n) = 2 + 4 + . . . + 2n+1. Subtracting the first equality from the second we get:

2 ∗ S(n) = 2 + 4 + . . . + 2n +2n+1

- S(n) = 1+ 2 + 4 + . . . + 2n

S(n) = −1 +2n+1

8. A number is prime if it is only divisible by itself and 1. The prime factorization of a number n
represents n as the product of prime numbers. That is, it represents n as the product of some
number of 2’s, some number of 3’s, and so on through all the prime factors of n. For example
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36 = 2232. Suppose n (such as 36) is a multiple of 9 but not a multiple of 27. Then the
exponent of 3 in its prime factorization is 2. A factor f of n can be divisible by 3 or 9 (or not
even by 3), but it cannot be divisible by any power of 3 higher than 32. The greatest common
divisor (GCD) of two numbers n and m must be a factor of each of them. Thus the exponent
of 2 in the prime factorization of GCD(n, m) can be at most the minimum exponent of 2 in
the prime factorizations of n and m. The largest common divisor will have the exponent equal
to this minimum for all its prime factors. For example

GCD(2x3y, 2w3z) = 2min(x,w)3min(y,z).

The least common multiple of n and m must have the exponent of 2 at least as large as the
exponent of 2 in either n or m. The smallest such multiple will have the exponent of 2 exactly
equal to the maximum exponent of 2 in either n or m, and similarly, we can determine the
exponent for all other prime factors by choosing the maximum corresponding exponent from
n or m. For example

LCM(2x3y, 2w3z) = 2max(x,w)3max(y,z).

We apply this to the first three subproblems.

(a) GCD(10, 15) = 5, LCM(10, 15) = 30. 10 = 2 × 5 and 15 = 3 × 5. The only common
prime factor is 5, which appears once in each factorization. The LCM must have the
maximum exponent for all factors appearing in the prime factorization, in this case an
exponent of 1 for each of factor 2, 3, and 5, so LCM(10, 15) = 2× 3× 5 = 30.

(b) GCD(12, 18) = 6 and LCM(12, 18) = 36. Since 12 = 22 × 3 and 18 = 2 × 32,
GCD(12, 18) = 2× 3 and LCM(12, 18) = 22 × 32 = 36.

(c) a = 81, b = 10, c = 102, d = 33, e = 0, f = 0, g = 400, h = 56, i = 270, j = 86,
k = 25, l = 2. The exponents for GCD are the minimum exponent from either n or m.
The exponents for LCM are the maximum from either n or m. A missing factor has an
exponent of 0.

(d) 4. The factorization of 2100 is 22 × 3 × 52 × 7. Both numbers, say n and m must be
divisible by 6, so each starts with 2× 3 in their prime factorization. Between the two of
them, they must also have exactly 2100/6 = 2×52×7 as additional factors. If there were
more factors, the LCM would be larger. We must assign each of these remaining factors
to either n or m to find a pair satisfying the requirements of the problem statement
(with the appropriate GCD and LCM). How many ways can we do this? The two fives
must both be in one number or the other, otherwise the GCD would not be six. So
any combination of 2, 52, 7 can be multiplied by six to get one of the numbers, the other
number is six multiplied by the remaining numbers. To determine the first number, we
must make three choices, each with two options: include 2 as a factor or not, include 25
as a factor or not, and include 7 as a factor or not. Thus there are 2 × 2 × 2 = 23 = 8
ways to pick a subset of {2, 25, 7} to form the number n. The 8 choices are:

{1, 2, 52, 2× 52, 7, 2× 7, 52 × 7, 2× 52 × 7}

Each pair has been counted twice, for example (6, 2001), (2001, 6). So there are actually
23/2 = 4 pairs.

{(6, 2100), (12, 1050), (150, 84), (42, 300)}.
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9. “Marvelous you solved the puzzle.” In the following discussion, we will always enclose un-
resolved regions in a box and newly-resolved numbers will be in bold type. There are many
ways to solve this problem. For example, the steps described here could be applied in different
orders. There are probably other rules one could apply as well, all leading to the same result.

Only numbers in the 10’s and 20’s are two-digit numbers so any digit not a 1 or 2 preceeded
by a digit that is not a 1 or a 2 must be a single digit:

2322417 , 7, 2615 , 4, 1127251018121313 , 5, 2216 , 6, 141921820 , 9

Since 7, 4, 5, 6, 9 are single digits, any other occurrence of these digits must be in the 10’s or
20’s:

232 , 24, 17, 7, 26, 15, 4, 11 , 27, 25, 1018121313 , 5, 22 , 16, 6, 14, 19, 21820 , 9

Zero is not a single digit, so if a zero occurs it must be with 10 or 20; in the first set of three
digits, 232, 32 is not a feasible number, so the second 2 is the isolated digit 2. Since the single
digit 2 is found, the remaining two’s must be part of two digit numbers 23,21,22,12:

23, 2, 24, 17, 7, 26, 15, 4, 11 , 27, 25, 10, 18 12, 1313 , 5, 22, 16, 6, 14, 19, 21, 8 , 20,9

There is only one 13, so the block of 1313 must contain the single digit 1 (also the number 13
and the single digit 3), so any other 1’s must be part of two digit numbers – 11,18; also the
digit 8 is isolated.

23, 2, 24, 17, 7, 26, 15, 4, 11, 27, 25, 10, 18, 12, 1313 , 5, 22, 16, 6, 14, 19, 21, 8, 20,9

Now the only ordering not known is the division of 1313. This could be either 13, 1, 3 or 1, 3, 13.
These characters are V EL. Check the orderings of the message to see which fits. The only ordering
that fits is 13, 1, 3, so the permutation is:

23, 2, 24, 17, 7, 26, 15, 4, 11, 27, 25, 10, 18, 12, 13, 1, 3, 5, 22, 16, 6, 14, 19, 21, 8, 20, 9

and the message is:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
V A E U D E E Z E U S O L P O H V S U L Z T M R O L Y
M A R V E L O U S Y O U S O L V E D T H E P U Z Z L E

10. (a) 4, 6, 24. σ(3) = 1 + 3 = 4, σ(5) = 1 + 5 = 6, and σ(15) = 1 + 3 + 5 + 15 = 24.

(b) 2047. σ(210) = 1 + 2 + 22 + . . . + 210. In the notation of problem 7, this is S(10). From
problem 7c, we know that S(10) + 1 = 2048. Therefore σ(210) = S(10) = 2047.

(c) 2048. Since 211 − 1 is prime, σ(211 − 1) = 1 + 211 − 1 = 211 = 2048.

(d) 2047(2048). Because 211−1 is prime and it is greater than 210, every factor of 210(211−1)
is a factor of 210 or is a factor of 210 multiplied by 211 − 1. The sum of all the factors of
the first type is 2047 from part b of this problem. The sum of all factors of the second
type is therefore 2047(211−1). Adding these gives 2047(211). Note that σ(210(211−1)) =
2[210(211 − 1)]. Numbers n with the property σ(n) = 2n are called perfect numbers.

11. and 12.
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(a) 136080. There are 9 choices for the most significant digit (because 0 is not an option), 9
for the next most significant digit (because 0 is now an option but whatever was selected
as the most significant digit cannot be used), 8 for the next, and so on: 9×9×8×7×6×5 =
136080.

(b) 168570. Using the argument from the previous step, there are 9 single-digit numbers,
9× 9 two-digit numbers, 9× 9× 8 three-digits numbers and so on. So there are 9 + (9×
9)+(9×9×8)+(9×9×8×7)+(9×9×8×7×6)+(9×9×8×7×6×5) numbers with
at most six digits. You could compute this keeping a running total, and using partial
products as you go along. For example, start with 9 + 81 = 90. The next term to add is
81× 8 = 648. So the new total is 90 + 648 = 738. The next term to add is 648× 7 and
so on. The computation is easier, however, if you recognize that you can factor 9 from
every term in the sum

9(1 + 9 + (9× 8) + (9× 8× 7) + (9× 8× 7× 6) + (9× 8× 7× 6× 5)).

One can now factor 9 from all but the first term, and continue this factoring to get:

9(1 + 9(1 + 8(1 + 7(1 + 6(1 + 5))))).

Evaluate this by starting with the innermost parentheses (1 + 5). Iteratively add 1 and
multiply until the computation is complete.

(c) There are 168570 numbers with six or fewer digits. Using the argument from part a, there
are 136080 × 4 = 544320 seven digit numbers, so there are 168570 + 544320 = 712890
numbers with seven or fewer digits. The 288657th number therefore must be a seven
digit number. The 288657th smallest number is the 288657− 168570 = 120087th largest
7-digit number (subtracting the number of numbers with fewer than 7 digits). There
are 544320/9 = 60480 numbers with the leading digit fixed for each of the nine possible
leading digits. That is, there are 60480 with leading digit 1, 60480 with leading digit 2
and so on. 120087/60480 has a quotient of 1 and a remainder of 59607, so the leading
digit is the second smallest or 2. Therefore the number we seek is the 59607th largest of
the 7-digit numbers that start with 2. There are 50480/9 = 6720 numbers with leading
digit 2 and next digit fixed to any one of the nine remaining digits (0,1,3,4,5,6,7,8,9).
Dividing the remainder from the first part by 6720 is 59607 = (8)6720 + 5847. The
ninth remaining digit (counting from zero) in this list is 9. So the next digit is 9 and
the number we seek is the 5847th smallest of the numbers that start with 29. There
are 6720/8 = 840 seven-digit numbers with the first two digits 29. Continuing in this
fashion:

digit significance remaining digits index digit
1 1, 2, 3, 4, 5, 6, 7, 8, 9 120087 = (1)60480 + 59607 2
2 0, 1, 3, 4, 5, 6, 7, 8, 9 57607 = (8)6720 + 5847 9
3 0, 1, 3, 4, 5, 6, 7, 8 5847 = (6)840 + 807 7
4 0, 1, 3, 4, 5, 6, 8 807 = (6)120 + 87 8
5 0, 1, 3, 4, 5, 6 87 = (4)20 + 7 5
6 0, 1, 3, 4, 6 7 = (1)4 + 3 1
7 0, 1, 3, 4, 6 3 4
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Note that if the quotient is x, then the number is bigger than all the first x groups
and the next digit is the (x + 1)st smallest of those remaining. For example, for the
fourth most significant bit, the quotient is 6 so the next digit is the 7th smallest of those
remaining, in this case 8. So the 288657-th number is 2978514. Mapping 1 to A, 2 to B,
and so on, the check phrase is BIGHEAD.

13. (a) 3
8
. Throughout this solution, we will use a segment name (such as AB) to refer to the

segment’s length. Because AC is the side of a unit square, AC = 1. Because B is the
midpoint of AC, we have BC = 1

2
. Let x be the length of CD, then DE = 1 − x. By

construction, DE = DB (since point E lies at B after the folding; these are equivalent
sides of the two congruent quadrilaterals). Therefore DB = 1 − x. Triangle BCD is a
right triangle, so applying the Pythagorean theorem, simplifying and solving yields the
value of CD: (

1

2

)2

+ x2 = (1− x)2

1

4
+ x2 = 1− 2x + x2

1

4
= 1− 2x

2x =
3

4

x =
3

8
.

(b) 1
3
. We’ll show that AJ = 2

3
. Then, since AG = 1, we have GJ = 1

3
. Triangle ABJ

(labeled triangle 1 in the figure) is similar to triangle BCD (labeled triangle 2 in the
figure). They are both right triangles, since angles JAB and BCD are right angles.
Angle ABJ is complementary to angle CBD (they sum to 90 degrees), since angle JBD
is a right angle (corresponding to angle FED after the fold) and the three create a
straight line (180 degrees). However, angle ABJ is also complementary to angle AJB,
since they are the non-right angles in a right triangle. Therefore, angle AJB is the same
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as angle CBD. Triangle 2 is a 3-4-5 triangle, with the “3” side opposite angle DBC
(of size α in the figure). Since AB = 1/2, we use the proportionality of sides in similar
triangles:

1
2

AJ
=

3

4
2 = 3AJ

AJ = 2/3.
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